Biometric hashing for handwriting: entropy-based feature selection and semantic fusion

نویسندگان

  • Tobias Scheidat
  • Claus Vielhauer
چکیده

Some biometric algorithms lack of the problem of using a great number of features, which were extracted from the raw data. This often results in feature vectors of high dimensionality and thus high computational complexity. However, in many cases subsets of features do not contribute or with only little impact to the correct classification of biometric algorithms. The process of choosing more discriminative features from a given set is commonly referred to as feature selection. In this paper we present a study on feature selection for an existing biometric hash generation algorithm for the handwriting modality, which is based on the strategy of entropy analysis of single components of biometric hash vectors, in order to identify and suppress elements carrying little information. To evaluate the impact of our feature selection scheme to the authentication performance of our biometric algorithm, we present an experimental study based on data of 86 users. Besides discussing common biometric error rates such as Equal Error Rates, we suggest a novel measurement to determine the reproduction rate probability for biometric hashes. Our experiments show that, while the feature set size may be significantly reduced by 45% using our scheme, there are marginal changes both in the results of a verification process as well as in the reproducibility of biometric hashes. Since multi-biometrics is a recent topic, we additionally carry out a first study on a pair wise multi-semantic fusion based on reduced hashes and analyze it by the introduced reproducibility measure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwriting: Feature Correlation Analysis for Biometric Hashes

In the application domain of electronic commerce, biometric authentication can provide one possible solution for the key management problem. Besides server-based approaches, methods of deriving digital keys directly from biometric measures appear to be advantageous. In this paper, we analyze one of our recently published specific algorithms of this category based on behavioral biometrics of han...

متن کامل

Feature Selection by User Specific Feature Mask on a Biometric Hash Algorithm for Dynamic Handwriting

One of the most important requirements on a biometric verification system, beside others (e.g. biometric template protection), is a high user authentication performance. During the last years a lot of research is done in different domains to improve user authentication performance. In this work we suggest a user specific feature mask vector MV applied on a biometric hash algorithm for dynamic h...

متن کامل

Biometric Hashing Based on Genetic Selection and Its Application to On-Line Signatures

We present a general biometric hash generation scheme based on vector quantization of multiple feature subsets selected with genetic optimization. The quantization of subsets overcomes the dimensionality problem of other hash generation algorithms, while the feature selection step using an integer-coding genetic algorithm enables to exploit all the discriminative information found in large feat...

متن کامل

A Hierarchical Fusion Strategy based Multimodal Biometric System

Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric identification systems is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-c...

متن کامل

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008